
GATS Page 1 – 5 G. Santor

GATS Companion

C++: const(…) = speed & safety
Author: Garth Santor
Editors: Trinh Hān
Version/Copyright: 1.0.0 (2024-01-20)

Overview
Constants in C and C++ are often misunderstood, at times appearing magical often disappearing in the machine code. In this

document I discuss the foundational concepts, the purpose of the const language elements, best practices, and the future.

For now, I’ve intentionally left off discussing const… in relation to classes. I’ll cover that sometime in the future.

Concepts
Mathematical constant
A fixed and well-defined number such as zero, one, pi, e, i, the golden ratio, etc.

The value of a mathematical constant is determined by theorems and bear names reflecting their purpose or the mathematician that

discovered the value.

The five most important mathematical constants are:

• Zero – the additive identity.

• One – the multiplicative identity.

• Pi or 𝝅 – the ratio of a circle's circumference to its diameter.

• e – Euler’s number is the base of the natural logarithms.

• i – the imaginary number, such that 𝑖2 = −1.

Physical constant
Physical constants are like a mathematical constant but not explainable by a theorem. They are determined by experimentation.

Some of the most famous physical constants are:

• the gravitational constant G.

• the speed of light c.

• the Planck constant h.

Constant functions
A mathematical function whose output is the same for every input.

Example: y(x)=42 is a function that defines a horizontal line with a y-intercept of 42.

Literal
A textual representation of a value (in source code).

C++ Examples:

'c' is a character literal

"hello" is a string literal

42 is an integer literal

3.14 is a real number literal

GATS Page 2 – 5 G. Santor

Constants in programming
A value that is not altered by the program during normal execution.

Literals are unnamed constants.

Named constants have an identifier associated with the value.

Examples:

constexpr int num_cores{32};

std::numbers::pi

Variable in programming
An abstract storage location with a symbolic name.

e.g., int age{42};

In this example the symbolic name ‘age’ is associated with a storage location that has been abstracted by the compiler. In this case,

either in global static memory or the process stack. Either way, the programmer doesn’t need to be concerned with the specific

location.

Constant expression/Constant folding
An expression that can be evaluated at compile-time as opposed to runtime (i.e., the resulting value of the expression never changes).

Example: 42 / 2 always evaluates to 21 and is therefore a constant expression.

The process of identifying and evaluating constant expressions is called ‘constant folding’. Constant folding has been a feature of

compilers going back to Fortran and COBOL during the 1950s.

C++ language support
‘const’
A type-qualifier that indicates that the named data is read-only. This restriction only applies after a value is assigned to that memory

location.

A variable tagged as const could be evaluated at compile-time if its value comes from a literal or constant expression.

Example: const int max_cores{ std::thread::hardware_concurrency() };

‘constexpr’ variables
‘constexpr’ is a type-qualifier that indicates that the named data is read-only and will be assigned its value at compile time.

‘constexpr’ variables can acquire their values from literals, other constexpr variables, constexpr functions, or consteval functions.

Example: constexpr int gigabyte{ 1024 * 1024 * 1024 };

‘constinit’ variables
‘constinit’ is a type-qualifier that indicates that the named data will be assigned its value at compile time but that it is still a variable

that can be modified later at runtime.

Example: constinit static size_t cache_size{ std::numeric_limits<size_t>::max() / 5 };

‘constexpr’ functions
‘constexpr’ preceding a function definition indicates that the function is capable of evaluation at either runtime or at compile time.

Compile time evaluation occurs with the function parameters can be resolved at compile time (i.e., they are literals or constexpr

variables). If the parameter values cannot be resolved until runtime, a constexpr function will be executed at runtime.

GATS Page 3 – 5 G. Santor

Example: constexpr int square(int n) { return n * n; }

 int z;

 cin >> z;

 int x = square(5); // compile-time

 int y = square(z); // runtime

‘consteval’ functions
‘consteval’ preceding a function definition indicates that the function should only be evaluated at compile time.

The arguments to a consteval function must be literals, constexpr variables, or the result of a consteval function (or constexpr function

that can be evaluated at compile-time)

Example: consteval int square(int n) { return n * n; }

 int z;

 cin >> z;

 int x = square(5); // compile-time

 int y = square(z); // error

‘std::is_constant_evaulated()’
Is a C++ 20 function that returns true if the enclosing function is evaluated at compile time but returns false if it is evaluated at

runtime. The function is found in the <type_traits> library.

Example: if (std::is_constant_evaluated())

 return square(n); // as defined above...

 else
 return n*n;

What is the point?
What is the point to all of this? My program works without them.

As the title to this document indicates, its all about speed and safety.

Safety first!

Readability

Constants with clear names make it easy to determine that the computation is correct.

Example: c = 6.283185307279586476925286766559 * radius; // circumference

 vs. c = 2 * pi * radius;

 The first one is incorrect; it should have been:

 c = 6.283185307179586476925286766559 * radius;

Logic errors become syntax errors.

Typographical errors can be caught by the compiler.

Example: void foo(int n) {

 if (n = 42)

 do_this();
 else

GATS Page 4 – 5 G. Santor

 do_that();

 }

 This incorrect code always executes do_this() since the if condition is an assignment, not the intended comparison.

 The correct line should have read, “if (n == 42)”

 This logic error becomes a syntax error by adding a const to the parameter.

void foo(const int n) {

 if (n = 42) // error: cannot assign to constant ‘n’

 do_this();
 else

 do_that();

 }

Speed
Yes, sometimes you can have your cake, and eat it too!

All of the constant tags provide information to the compiler’s optimizer that allows it to safely take shortcuts.

• Constant folding reduces the number of operations required to complete a computation.

• Const tells the compiler that the value will not change and therefore does not need to be repeatedly accessed from memory (it

would be safe to leave the value in a CPU register).

• Constexpr tells the compiler that the value of the expression will never change, so go ahead and pre-calculate the result. The

compiler can often avoid a separate read operation to acquire the value, instead bundling the value with the operation that will

use it (the value is loaded when the machine code that will use it is loaded).

• Constinit can guarantee that global and static variables will have their initial values when the program loads, as they would

be stored in the executable file as opposed to being computed after the program loads. This makes many initializations

effectively ‘free’.

• Consteval guarantees that a computation that a programmer believes to be compile-time computable is in-fact computed at

compile-time.

Best Practices
1. Declare mathematical and physical constants as constexpr variables. Mathematical constants either never change or rarely.

If they do, you can make a single change that would update every reference to that constant.

2. Limit const to variables whose values are determined at runtime but don’t change after input or after being passed to a

function.

3. Write any function as a constexpr function if possible.

4. Use ‘constinit’ to help variables load faster (where you can).

5. Use ‘consteval’ to help force compile-time execution where you know this is possible.

6. Use ‘is_constant_evaluated()’ to provide the flexible options: compile-time where you can, runtime where you have to.

In modern C++ (which starts with C++ 11), best practices #1 – 3 should become routine and applied wherever you can.

Practices #4 – 6 are restricted to C++ 20 and later and tend to be used by library developers and experts that are performance tuning

their code.

Future
‘consteval if’
With C++ 23, if-statements can be tagged with ‘consteval’ or ‘not consteval’ which will allow a function to choose between a runtime

or compile time solution as required.

GATS Page 5 – 5 G. Santor

Full math library support
With C++ 26, the floating-point functions will become constexpr functions.

Document History
Version Date Activity

1.0.0 2024-01-20 Document created.

